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Abstract

This paper is a redo of an article that first appeared in the Arizona Journal
of Natural Philosophy, January, 1991.

In this article I want to demonstrate some heuristics for solving geometric proofs
using the methods of vector algebra. An understanding of vector algebra is
assumed. My plan is to present three problems solved in full, and to aid the
reader in finding the heuristic principles involved.

It’s very important in solving these problems to understand what it means
to use the method of vectors: We will be translating the geometric information
in the problem into operations on vectors, such as vector lengths or the angle
between two vectors, and doing so by use of vector dot and/or cross products
on vectors. We will call these relationships structure conditions or equations,
because they help determine the geometric structure of the figure.

1 Problem 1:

Using the methods of vector algebra show that an angle inscribed in a semicircle
is a right angle.

Step 1. We start off by drawing a figure of the given problem, as in Figure 1.1.

Step 2. Next we label the parts of the figure and when possiblerestate all other
given information into vector form, as in Figure 1.2. For the problem here, to
prove that α is a right angle, it is sufficient to show that

d · e = 0 . (1)
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You may wonder what motivated me to draw in and label the vector c, but
that’s really easy to see after I explain the heuristic technique I call The Method
Of Subtraction in Step 4.

Step 3. This step reduces the number of independent vector labels by solving
as many vectors as possible in terms of as few vectors as possible. There is no
unique way to do this generally, so choose the ones you want to remain, and
solve for the others in terms of them. In this case I’ll choose to write b as −a,
and keep c. Then, vectors d and e can be written in terms of vectors a and c.
The result is displayed in Figure 1.3.

Step 4. OK, it’s time to tell you the secret to The Method of Subtraction:
One at a time, subtract from the figure any convenient part, while translating
its geometric information into algebraic form. It’s obvious that the semicircle
should be the first thing to go! Why? Simply because vector methods are
tailor-made to use with line segments, not with circles per se. So to remove
the semicircle while leaving the information that all three vertices are the same
distance from the center of the circle, I added the directed line segment c to the
representation in Figure 1.2. Thus, the truncated figure in Figure 1.4 requires
the additional added algebraic information that |a |2 = | − a |2 = | c |2 = r2,
where r is the radius of the circle. We can write this more simply as

a2 = c2 = r2 . (2)

The only parts left should be simple polygons, which we can translate by the
method given in the next step.

Step 5. This step is used to translate the remaining information contained in the
simple polygons. For each simple polygon, which we will refer to as a region, we
will label it with a roman numeral as in Figure 1.5. Then we will write down for
each region its vector circuit or loop equation, which is a vector equation that
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adds up all the vectors forming the perimeter, which adds to zero. Or another
scheme is to solve for one side of a simple polygon in terms of the sum of all the
other sides (the vectors being added either in a clockwise or counterclockwise
manner). Admittedly, this particular problem does not reveal the power of this
method, but don’t worry, the next two will.

Step 6. We now have enough information to solve the problem algebraically.
Harkening back to (1), we see we need to show that

(c− a) · (c + a) = c · c− a · a = r2 − r2 = 0 (3)

where we have used that a · c = c · a, confirming Eq. (1); hence α = 90. And
the proof is finished.

Before going on to the next problem, I want to point out that all the vector
information is neatly divisible into two classes: The class of circuit equations,
which contains topological information, and the class of structure equations,
which contain everything else (i.e., the metrical information). The latter class
contains everything involving dot products, cross products, and vector lengths.

I have a couple remarks on Problem 1 and its solution in retrospect: First,
there is a third Region (III) I didn’t label, namely, the region composed of the
sum of Regions I and II, that is, the big triangle. The information contained in
these regions is not independent of each other, and so the problem solver has
to make a choice of which regions to use and which to leave out — formally, at
least. In the next problem there will be many regions to choose from, and the
choosing may be the most difficult part of the solution.

My second remark is that I wish I had kept vectors d and e and just stated
the obvious loop equations:

Region Loop Equation
I d = −a + c
II e = −b + c = a + c

Table 1: Note: b = −a.

2 Problem 2:

Show that the median of one vertex V of a triangle is bisected by a line segment
from either one of the other vertices if that segment divides the side it intersects
into segments whose lengths ratio is 1 : 2, the smaller segment being adjacent
to vertex V.
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Step 1. We begin with Figure 2.1, displayed above. The line segment AV is the
median at vertex V because it bisects the opposite side OB, hitting it at the
midpoint A. The vector y starts at point O and stops at side VB, dividing it
into segments of ratio 1 : 2, the shorter side being closest to V. The vector x
starts at vertex O and continues along vector y until it hits line segment VA,
dividing it into two segments c and λc. Since we are to show that this procedure
has bisected VA, we must show that λ = 1.

On careful examination of Figure 2.1, we see that there are exactly two
pieces of structure information not already nailed down.1 First, that x× y = 0
(ensuring that x and y lie on the same line).2 And second, the value of λ.
Logically, resolving the former should lead us to the latter; hence, our Main
Structure Equation is

x× y = 0 . (4)

I’m now adding into the mix two regions not manifest in the figure: First, Region
IV, which is the triangular region being the sum of regions II and III. Second,
Region V, which is the triangular region being the sum of regions I and II.

This brings us to:

Step 2. Write down the five loop equations:

(Region I) x = b + λc (5)

(Region II) y = −λc + b + 2a (6)

(Region III) y = −c− a (7)

(Region IV) 3a = −b + (λ+ 1)c (8)

(Region V) y = 2b + 2a (9)

Now, substitute x in the main structure equation (4) its value from Eq. (5), and

1The dotted segment OV is a nonplayer, since it will be determined as soon as triangles I,
III, and quadrilateral II are determined.

2It’s also possible to use as an alternative for this condition that x = ty, where t is a real
number. I haven’t tried this approach, but why introduce another variable?
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substitute for y its value from (9):

(b + λc)× (2b + 2a) = 0 . (10)

On expanding this and then simplifying, we get

(−b)× (λc− a) + λc× a = 0 . (11)

Now, solving for −b in Eq. (8) and substituting into this last equation, we get

3λa× c + (λ+ 1)c× a + λc× a = 0 , (12)

and since c× a (= −a× c) is not zero, we require that λ = 1, as required.

3 Problem 3:

Show that the altitudes of a triangle are concurrent.

Step 1. We know that the altitudes meet in pairs, so we know that the points
labeled x,y, z exists as demonstrated in Figure 3.1.

This time, however, I want to try a different labeling scheme by using the
difference of points to label the line segments. For instance, b− z is the vector
from z to b. This brings us to Figure 3.2.

That there are three altitudes (line segments intersecting in pairs to form
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right angles), the structure information takes the form:

(b− z) · (a− c) = 0 , (13)

(a− y) · (b− c) = 0 , (14)

(c− x) · (b− a) = 0 . (15)

It is sufficient for solving our problem to show that α = β = γ = 0. And
I’m going to use a standard cheat: I’m going to show that α = 0 and claim
that by the symmetry by which the variables enter this problem, that the exact
same method will show that β and γ are also zero. Now, we won’t need all the
possible circuit (loop) equations here, so a judicious choice will save the day.

Remark: It’s reasonable to assume from the outset that all three structure
equations are necessary for this proof; hence, it’s reasonable to expect that we
must incorporate each of them in the solution somewhere.

We start with the circuit equation for triangle bxc.

(1 + α)(b− z) = (c− x) + (b− c) . (16)

Notice that our structure equations are scalar equations and our loop equations
are vector equations; thus, to put them on an equal footing, we must either dot
the loop equations to scalarize them or else substitute the loop equations into
the structure equations. In the process of this proof, we’ll do both. By dotting
(16) through by (b− a), we can invoke constraint (15):

(1 + α)(b− z) · (b− a) = (c− x) · (b− a) + (b− c) · (b− a) , (17)

where the first term on the RHS drops out, yielding

(1 + α)(b− z) · (b− a) = (b− c) · (b− a) . (18)

We have two constraints left to use. Let’s look at constraint (14). We need
another circuit equation to use that. From triangle azb, we get that

(1 + γ)(y − a) + (b− z) = (b− a) . (19)

By dotting this through by (b− c) and using (14), we get

(b− z) · (b− c) = (b− a) · (b− c) . (20)

Now we have a clever way to employ the last constraint, Eq. (13). Since b−c =
(b−a) + (a− c), then substituting this into the LHS of the last equation yields

(b− z) · [(b− a) + (a− c)] = (b− a) · (b− c) , (21)

which by (13) becomes

(b− z) · (b− a) = (b− a) · (b− c) . (22)

Now, using this in the LHS of (18), yields

(1 + α)(b− a) · (b− c) = (b− c) · (b− a) , (23)

which requires that α = 0. Similarly, β = γ = 0, and we are done.
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